

1. Features:

The temperature controller has 5 channels of sensors input and 5 channels of temperature controls.5 kinds of combinations of temperature set value, PID constant, alarm set value, etc.

1.1.Input Sensor Types

Thermocouple (temperature input): K, J, T, E, S

Resistance thermometer (temperature input): Pt100, CU50

1.2.Control Outputs

- a. Relay output: relay contact: 250 V AC, 3 A (Resistive load)
- b. SSR output: DC 0/10v voltage output (for driving SSR)

depending on the controller model.

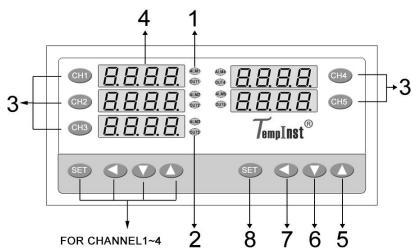
1.3. Adjusting PID Constants

Can be easily set the optimum PID constants by performing AT (auto-tuning) with the limit cycle method.

1.4. Standard Alarms (OPTIONAL)

Relay contact:250 V AC, 3 A (Resistive load).

Can be output an alarm when the deviation, process value, set point, or manipulated value reaches a specified value.


- 1.5 Sampling Time: 2 sec
- 1.6.Use this controller within the following allowable range:

Allowable ambient temperature: -0 to +55 °C Allowable ambient humidity: 5 to 85 % RH.

2. Dimensions:

hxwxd(Unit: mm) 160x80x85 Panel cutout 152x76

3. Parts Description:

1 ALM: lamp Lights when Event occurs

3 Channel key:

Press 'CH1~5 for 3 seconds to enter into corresponding channel menu.

5 Up key:

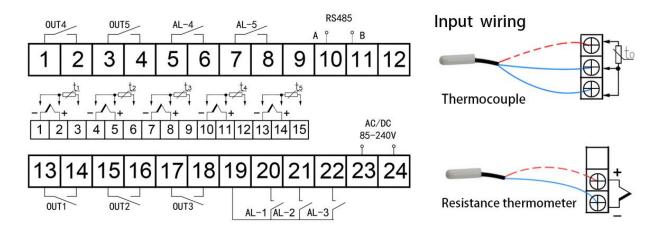
Increase numerals.

7Shift key: Shift digits when settings are changed.

2 Output lamp: Lights when output is turned on

4 PV display:

Displays Measured value (PV)


6 Down key:

Decrease numerals

8 Set (SET) key: Used for parameter calling up and set

value registration.

4. Terminal Arrangement:

This wiring diagram is offered for example purposes only. Tip: Correct terminal arrangement depending on the actual model.

5. Parameters

Table 5.1

ID	Symbol	Name	Manual	Setting range	Ex-Factory
The publi	ic paramete	rs(First level)			
0	LoCY	Set data lock	LOCK=18, Set data unlock LOCK≠18, Set data lock.	0~50	18
1	Ł5	Input type	Refer to Table 5.2	-	-
2	ALP	Alarm Output Define	0: Alarm function OFF; 1:Process high alarm; 2:Process low alarm; 3: Deviation High alarm; Refer to the next subsection 9. Alarm function	0-6	0
3	LF.	PID control cycle time	PID control response time		120
4	dР	Decimal point Selection	O: No decimal point 1: 1 decimal digit	0-1	1
5	P5-H	Lower Limit	Lower Limit of SP and AL set value		0
6	P5-L	High Limit	High Limit of SP and AL set value		9999
7	₀Р-Ь	Communication	0:OFF: No communication 1:RS: RS485 MODBUS-RTU	0-1	off
8	Addr	Address	Communication address can be set from 1 to 255	1~255	1
9	bRud	Baud Rate	1200; 2400; 4800; 9600;	-	9600

The Para	The Parameters of each channels (Second level)					
eg: SP of	eg: SP of the first channel show as 5Pl ,SP of the second channel show as 5P2					
10	5P	Setting Values Of channel N, (N=1-4)	Set the temperature set value (SV) which is the target value for control	Determined by P-SL P-SH	100	
11	RL	Alarm setting	Refer to the next subsection 9. Alarm function		0	
12	РЬ	PV Bias	The value set in the PV bias is added to the actual input value to correct the input value.	±20.0	0.0	
13	ĽP	Proportional band	Set when PI or PID control is performance. For heating / cooling PID action. When P=0,the controller is ON/OFF control	1~100	100	
14	ĽI	Integral time	Eliminates offset occurring in proportional control.	0~3000	500	
15	L 9	Prevents overshoot and/or undershoot caused by integral action effect.		0∼2000S	100S	
16	НУ	Hysteresis Band	Output and alarm Hysteresis Value Refer to the next subsection: 8. OUT Relay contact On/Off mode 9. Alarm function	0.1~50.0	1.0	
17	ΠĿ	Auto tuning	1: AT with learning start 0: AT with learning stop	0~1	0	
18	CoL	Hot/Cold	'0':reverse control(heating) '1':positive control(cooling)	0~1	0	

Table 5.2

MODEL	Input type list				
KCM-XJ5W	Cu50(ĹuŚŪ) –50.0∼150.0℃		Pt100(<i>P Ł 2</i>) −199.9∼600.0℃		
	K(₺) -30.0~1300°C	E(<i>E</i>) -30.0∼700.0℃	J (⅃)-30.0~900.0℃		
	T(仁) -199.9∼400.0℃	S(5) -30∼1600°C	R (Γ)-30.0∼1700.0℃		

6. Operation

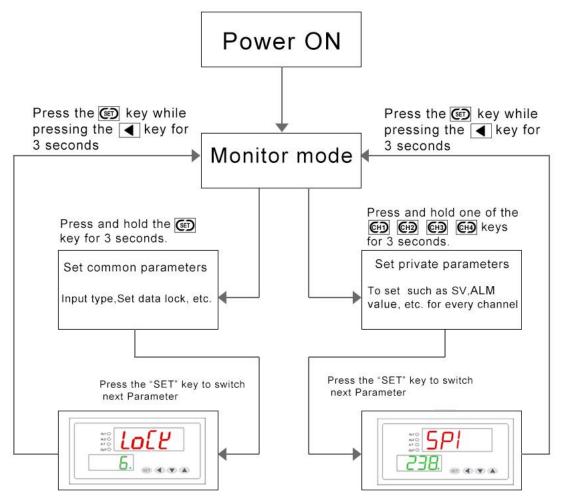
6.1 First level menu setting

Press and hold the \bigcirc key for 3 seconds to go to the first level menu, the controller will display the parameter symbols (0 \sim 9) on the first LED display, and display the parameter value on the second LED display.

6.2 Second level menu setting.

Press and hold the CH1/ CH2/ CH3 /CH4/CH5 key for 3 seconds to go to one of the channel menu level.

The controller will display the parameter symbols ($10\sim18$) on the first LED display, and display the parameter value on the second LED display.

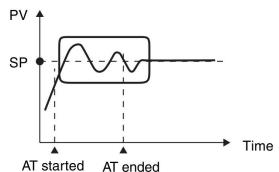

6.3 Parameter value setting

Press ◀ key to go to a different digit.

Parameters value can be changed by pressing the ▼ key or the ▲ key.

Press the \bigcirc key. The display changes to the next parameter and the new value will be stored. All the Parameters can be modified when $L \circ C \stackrel{!}{U} = 18$.

Display returns to the PV monitor if no key operation is performed within 10 seconds, and the set value will be saved.



7. Determining PID Constants (Auto-tuning)

When AT is executed, the optimum PID constants for the set point at that time are set automatically. A

method (called the limit cycle method) for forcibly changing the manipulated variable and finding the characteristics of the control object is employed.

Set parameter $H\mathcal{Y}$ as 0.5, if the output is relay set the $\mathcal{U}\mathcal{E}$ as 10, then set the $\mathcal{H}\mathcal{E}$ as 1, in this time the controller enter into **Auto-tuning**. PV window will alternately Display "AT" and PV value, control

mode is on-off mode, after 3 times vibrating(3 control period) automatic save P, I, D parameter, the self-adjusting procession finished.

Attentions:

- -The parameters of 16: Hy ,3: LE ,17: AE refer to 5. Parameters
- -when Auto-tuning, the controller should not change the set value.
- -When the power off during **Auto-tuning**, it will restart **Auto-tuning** next time.
- -When it need artificially exit during **Auto-tuning**, set the Parameter(AT) to 0 so that can exit, but the setting result will not be valid.

8. OUT Relay contact On/Off mode

set the parameter of kp(Proportional Band)=1, When kP=0,the controller is ON/OFF control.

OUT function		OUT status[ON]	OUT status[OFF]		
positive control	<i>ĽP</i> =0; <i>CoL</i> =1;	PV ≥ 5P + HY	PV ≤ 5P - HY		
reverse control	<i>LP</i> =0; <i>C</i> □ <i>L</i> =0	PV ≤ 5P - HY	PV ≥ 5 <i>P</i> + HY		
The parameters of 10: 5P ,13: ピア ,16: ዛህ ,18:Ը교L refer to 5.Parameters					

9. Alarm function[OPTIONAL]

Take example for channel 1 alarm					
Alarm function	Alarm status[ON]		Alarm status[OFF]		
RLP=1	PV1≥#Ll		PV1<#LI - HYI		
ALP=2	PV1 ≤ ALI		PV1>ALI + HYI		
ALP=3	PV1≥ <i>5Pl</i> + <i>RLl</i>		PV1< 5PI + ALI - HYI		
RLP=4	PV1≤ <i>5Pl</i> - <i>RLl</i>		PV1> 5PI - ALI + HYI		
	•				
ALP=5	Alarm status[ON]	PV1≤ 5P! - AL! OR PV1≥ 5P! + AL!			
nr=5	Alarm status[OFF]	5PI — RLI 🕂 H	191 < PV1< 5 <i>PI + RLI H9I</i>		
	Alarm status[ON]	5P! — RL! ≤ PV1≤ 5P! + RL!			
ALP=6	Alarm atatus[OFF]	PV1< <i>5PI</i> – <i>RI</i>	_! — HY! OR		
	Alarm status[OFF]	PV1> <i>5Pl</i> + <i>RLl</i>	! + HYI		
The parame	eters of 10: <i>5PI</i> , 11:	RLI , 16: HYI ,	2: RLP refer to 5.Parameters		

10. Host communication based on MODBUS-RTU protocol [OPTIONAL]

The master controls communication between master and slave. A typical message consists of a request (query message) sent from the master followed by an answer (response message) from the slave. When master begins data transmission, a set of data is sent to the slave in a fixed sequence. When it is received, the slave decodes it, takes the necessary action, and returns data to the master.

10.1 Communication Mode:

Data bit length	Stop bits	Parity bit	Communication time interval
8-bit (Binary)	1,2	NONE	300ms

10.2 Message length of each function (Unit: byte):

Function code	Function	Query me	essage	Response	e message
(Hexadecimal)	Function	Min	Max	Min	Max
03H	Read holding registers	8	8	7	7
06H	Preset single register	8	8	8	8

10.3 Message format

Slave address	The slave address is a number from 1 to 255 manually set at the front key panel of the
	controller.
Function code	Refer to 2. Message length of each function
Data	The data to execute the function specified by the function code is sent to the slave and
	corresponding data returned to the master from the slave.
CRC-16	CRC-16: Cyclic Redundancy Check)

10.4 Read holding registers [03H]

The query message specifies the starting register address and quantity of registers to be read.

Slave address	Function code	Register	Quantity	CRC16
	03H	address	The setting must be 1	

Example: The contents of the holding register 1001H are the read out from slave address 1.

Query message: 01 03 10 01 00 01 D1 0A Response message: 01 03 02 **00 FD** 79 C5 Explain: 00FD=253,is processed as 25.3

10.5 Preset single register [06H]

The query message specifies data to be written into the designated holding register. Only R/W holding registers can be specified. The controller EEPROM had a life span of data written to the EEPROM less than 1000,000 times

Slave address	Function code	Register	Write data	CRC16		
		address				
Example: Data is written into the holding register 0004H of slave address 1.						
	04 00 00 04 55					

Query message: 01 06 00 04 FF 38 88 29 Response message: 01 06 00 04 FF 38 88 29

When input set value(SV) is -20.0,-20.0 is processed as -200,-200=0000H-00C8H=FF38H

10.6 No response

The slave ignores the guery message and does not respond when:

- The slave address in the query message does not coincide with any slave address settings.
- The CRC code of the master does not coincide with that of the slave.
- Transmission error such as overrun, framing, parity and etc., is found in the query message.
- Set the Response Timeout >200ms and Delay between polls>200ms.

10.7 Register address list:

5 channels controller is composed of 3 channels controller and 2 channels controller, so it has two Slave address

Symbol	Decimal point	Real Register	Holding Register
--------	---------------	---------------	------------------

Measured value(PV1~3)	YES	PV1: 1001H~PV3: 1003H	44098~44100				
Measured value(PV4~5)	YES	PV4: 1001H~PV5: 1002H	44098~44099				
Channel 1~3 :the default M	Channel 1~3 :the default Modbus device address is 1, Channel 4~5 :the default device address is 2.						
The first public parameters (Refer to 5. Parameters)						
LocK	NO	0000H	40001				
TS	NO	0001H	40002				
Baud	NO	0009H	40010				
The Parameters of channel	1 (Refer to 5. Parameter	s)					
SP1(SP4)~ COL1(COL4)	-	000AH~0012H	40011~40019				
The Parameters of channel	2 (Refer to 5. Parameter	s)					
SP2(SP5)~ COL2(COL5)	-	0013H~001BH	40020~40028				
The Parameters of channel	The Parameters of channel 3 (Refer to 5. Parameters)						
SP3~ COL3	-	001CH~0024H	40029~40037				
5. 5 5525		55.5.1 552.11	1.0007				

Refer to this link for more information on MODBUS-RTU Communication Protocol:

http://www.kcmeter.com/servicesread.asp?id=4

Or scan QR code for more information:

11. Model and Suffix Code

Specifications	Model and Suffix Code							
Model	КС							
SIZE	160×80mm panel cutout :152×76mm	М			İ			
Number of channel	5 channels		XJ5					
Number alarm	No alarm							
	1 Alarm relay out for each channel			1				
Input Type	Thermocouple: K, E,J, R, S, T,RTD: Pt100, Cu50				W			
Control output	Control output Relay output							
	Voltage pulse(for driving SSR)							
Power supply voltage	er supply voltage 100 to 240V AC							
	24V DC						1	
Communications	RS-485(2-wire system: MODBUS-RTU)							
	RS-232(3-wire system: MODBUS-RTU)							

Character Symbols: This manual indicates 9-segment display characters as shown below.

Α	В	С	D	E	F	G	Н	ı	J	K	L	M
R	Ь	E	4	Ε	F	[Н	1	J	7	L	ō
N	0	Р	Q	R	S	Т	U	Υ				
n	o	Р	9	۲	5	Ł	U	9				