(E KCM-XJ5A Multi-Loop Controller Instruction Manual

1. Features:

The temperature controller has 5 channels of sensors input and 5 channels of temperature controls.5 kinds of combinations of temperature set value, PID constant, alarm set value, etc.

- 1.1.Input Sensor Types
 - -Current input (analog input): 4 ~ 20 mA DC, 0 ~ 10 mA DC
- 1.2.Control Outputs
 - a. Relay output: relay contact: 250 V AC, 3 A (Resistive load)
 - b. SSR output: DC 0/10v voltage output (for driving SSR)

depending on the controller model.

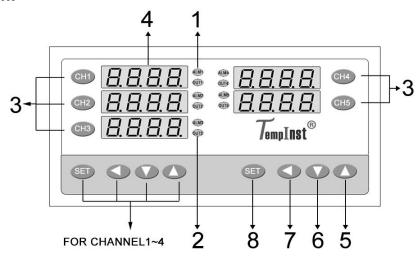
1.3. Adjusting PID Constants

Can be easily set the optimum PID constants by performing AT (auto-tuning) with the limit cycle method.

1.4. Standard Alarms (OPTIONAL)

Relay contact:250 V AC, 3 A (Resistive load).

Can be output an alarm when the deviation, process value, set point, or manipulated value reaches a specified value.


- 1.5 Sampling Time: 2 sec
- 1.6.Use this controller within the following allowable range:

Allowable ambient temperature: −0 to +55 °C Allowable ambient humidity: 5 to 85 % RH.

2. Dimensions:

hxwxd(Unit: mm) 160x80x85 Panel cutout 152x76

3. Parts Description:

- 1 ALM: lamp Lights when Event occurs
- 3 Channel key:

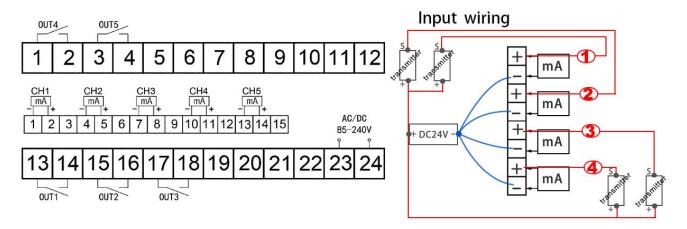
You can press 'CH1~5 for 3 seconds to enter into corresponding channel menu.

5 Up key:

Increase numerals.

7Shift key: Shift digits when settings are changed.

- 2 Output lamp: Lights when output is turned on
- 4 PV display:


Displays Measured value (PV)

6 Down key:

Decrease numerals

8 Set (SET) key: Used for parameter calling up and set value registration.

4. Terminal Arrangement:

This wiring diagram is offered for example purposes only.

Tip: Correct terminal arrangement depending on the actual model.

5. Parameters

ID	Symbol	Name	Manual	Setting	Ex-Factory			
	Cyllibol	Name	Mariaar	range	Ex-1 actory			
The publi	The public parameters(First level)							
0	1 _ []	Set data lock	LOCK=18, Set data unlock	0~50	18			
0	LoCY	Set data lock	LOCK≠18, Set data lock.	0 - 30	10			
1	оР-Ь	Communication	0:no output;	0∼4	-			
l	or-o	Communication	1:RS232 or RS485;	0 [~] 4	-			
2	Addr	Address	Communication address can be set from 0	0-255	1			
	יטטיי	Address	to 255	0-233	'			
3	bRud	Baud Rate	1200; 2400; 4800; 9600;		9600			
The Para	meters of	each channels(Sec	ond level)					
		5⊔ Setting value	Set the temperature set value (SV) which	Determined				
4	5u		is the target value for control	by P-SL	100			
			is the target value for control	P-SH				
5	AL	Alarm value	For more information,		0			
3	11	Alaitii value	Refer to 8. Alarm function		O			
			The value set in the PV bias is added to					
6	5E	PV Bias	the actual input value to correct the input	±20.0	0.0			
			value.					
			Set when PI or PID control is					
		Proportional	performance. For heating / cooling PID					
7	P	Proportional	action.	1~100	100			
		band	When P=0,the controller is ON/OFF					
			control					
8	1	Integral time	Eliminates offset occurring in proportional	0~3000	500			
O	,	integral tille	control.	0. 3000	300			

9	Ь	Derivative time	Prevents overshoot and/or undershoot caused by integral action effect	0~2000S	100S
10	НУ	Differential gap	Output and alarm Hysteresis Value Refer to the next subsection: 9. OUT Relay contact On/Off mode 8. Alarm function	0.1~50.0	1.0
11	Ł	PID control cycle.	PID control response time	2~120	20\$
12	dР	Decimal point position selection	Set the position of the decimal point for the measured value to be displayed.	0~3	0
13	ALP	Alarm type	0: Alarm function OFF; 1:Process high alarm; 2:Process low alarm; For more information, Refer to 8. Alarm function	0~6	-
14	50	Input type	4-20mA(I 5 ω) 0~20mA(I 5 ω)		1_50
15	dl L	Range high	Input range (high)	P-SL∼9999	0
16	al H	Range low	Input range (low)	-1999∼P-SH	9999
17	RĿ	Auto tuning	AT with learning start AT with learning stop	0~1	0
18	CoL	Hot/Cold	'0':reverse control(heating) '1':positive control(cooling)	0~1	0
	<u> </u>	J	1		

6. Operation

6.1 First level menu setting

Press and hold the \bigcirc key for 3 seconds to go to the first level menu, the controller will display the parameter symbols (0 \sim 3) on the first LED display, and display the parameter value on the second LED display.

6.2 Second level menu setting.

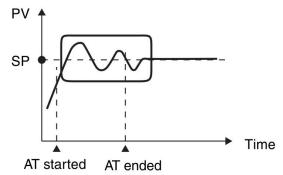

Press and hold the CH1/ CH2/ CH3 /CH4/CH5 key for 3 seconds to go to one of the channel menu level. The controller will display the parameter symbols ($4\sim18$) on the first LED display, and display the parameter value on the second LED display.

6.3 Parameter value setting

Press ◀ key to go to a different digit.

Parameters value can be changed by pressing the ▼ key or the ▲ key.

Display returns to the PV monitor if no key operation is performed within 10 seconds, and the set value will be saved.



7. Determining PID Constants (Auto-tuning)

When AT is executed, the optimum PID constants for the set point at that time are set automatically. A

method (called the limit cycle method) for forcibly changing the manipulated variable and finding the characteristics of the control object is employed.

Set parameter $H\mathcal{Y}$ as 0.5, if the output is relay set the \mathcal{E} as 10, then set the $\mathcal{H}\mathcal{E}$ as 1, in this time the controller enter into **Auto-tuning**. PV window will alternately Display "AT" and PV value, control mode is on-off mode, after 3 times vibrating(3 control period) automatic save P, I, D parameter, the self-adjusting procession finished.

Attentions:

- -The parameters of 10: Hy,11: E,17: RE refer to 5.Parameters
- -when Auto-tuning, the controller should not change the set value.
- -When the power off during Auto-tuning, it will restart Auto-tuning next time.
- -When it need artificially exit during **Auto-tuning**, set the Parameter(AT) to 0 so that can exit, but the setting result will not be valid.

8. Alarm function[OPTIONAL]

Take example for channel 1 alarm					
Alarm function	Alarm status[ON]		Alarm status[OFF]		
ALP=1	PV1 ≥ ALI		PV1<#LI - HYI		
ALP=2	PV1 ≤ ALI		PV1>ALI + HYI		
ALP=3	PV1≥ 5ul + ALI		PV1< 5ul + ALI - HYI		
RLP=4	PV1≤ 5ul - RLI		PV1> 5ul - ALI + HYI		
RLP=5	Alarm status[ON]	PV1≤ 5ul — ALI OR PV1≥ 5ul + ALI			
nr=5	Alarm status[OFF] 5ul - ALI + F		191 < PV1 < 501 + AL1 - H91		
	Alarm status[ON]	Sul — ALI ≤ PV1≤ Sul + ALI			
ALP=6	PV1 < 5ul ·		RLI — HYI OR		
	Alarm status[OFF]	PV1 > 5ul + ALl + HYI			
The parameters of 4: 5ப, 5: PLI, 10: HU, 13: PLP refer to 5.Parameters					

9. OUT Relay contact On/Off mode

Set the parameter of P (Proportional Band)=1, When P=0,the controller is ON/OFF control.

OUT function		OUT status[ON]	OUT status[OFF]		
positive control	P =0; CaL =1;	PV ≥ 5 ₀ + HY	PV ≤ 5u - HY		
reverse control	P =0; [aL =0	PV ≤ 5u - HY	PV ≥ 5u + HY		
The parameters of 4: 5□ ,7: P ,10: H⅓ ,18:ℂ□L refer to 5.Parameters					

10. Host communication based on MODBUS-RTU protocol [OPTIONAL]

The master controls communication between master and slave. A typical message consists of a request (query message) sent from the master followed by an answer (response message) from the slave. When master begins data transmission, a set of data is sent to the slave in a fixed sequence. When it is received, the slave decodes it, takes the necessary action, and returns data to the master.

10.1 Communication Mode:

Data bit length	Stop bits	Parity bit	Communication time interval
8-bit (Binary)	1,2	NONE	300ms

10.2 Message length of each function (Unit: byte):

Function code	Function	Query message		Response message	
(Hexadecimal)	Function	Min	Max	Min	Max
03H	Read holding registers	8	8	7	7
06H	Preset single register	8	8	8	8

10.3 Message format

Slave address	The aleve address is a number from 1 to 255 manually set at the front key panel of the
Slave address	The slave address is a number from 1 to 255 manually set at the front key panel of the

	controller.
Function code	Refer to 2. Message length of each function
Data	The data to execute the function specified by the function code is sent to the slave and
	corresponding data returned to the master from the slave.
CRC-16	CRC-16: Cyclic Redundancy Check)

10.4 Read holding registers [03H]

The query message specifies the starting register address and quantity of registers to be read.

Slave address	Function code	Register	Quantity	CRC16			
	03H	address	The setting must be 1				
Example: The cor	Example: The contents of the holding register 1001H are the read out from slave address 1.						
Query message: 01 03 10 01 00 01 D1 0A							
Response message: 01 03 02 00 FD 79 C5							
Explain: 00FD=2	253 is processed as	25.3					

10.5 Preset single register [06H]

The query message specifies data to be written into the designated holding register. Only R/W holding registers can be specified. The controller EEPROM had a life span of data written to the EEPROM less than 1000,000 times

Slave address	Function code	Register	Write data	CRC16		
		address				
Example: Data is	Example: Data is written into the holding register 0004H of slave address 1.					
Query message: 01 06 00 04 FF 38 88 29						
Response message: 01 06 00 04 FF 38 88 29						
When input set value(SV) is -20.0,-20.0 is processed as -200,-200=0000H-00C8H=FF38H						

10.6 No response

The slave ignores the query message and does not respond when:

- The slave address in the query message does not coincide with any slave address settings.
- The CRC code of the master does not coincide with that of the slave.
- Transmission error such as overrun, framing, parity and etc., is found in the query message.
- Set the Response Timeout >200ms and Delay between polls>200ms.

10.7 Register address list:

5 channels controller is composed of 3 channels controller and 2 channels controller, so it has two Slave address

Symbol	Decimal point	Real Register	Holding Register		
Measured value(PV1~3)	YES	PV1: 1001H~PV3: 1003H	44098~44100		
Measured value(PV4~5)	YES	PV4: 1001H~PV5: 1002H	44098~44099		
Channel 1~3 :the default M	lodbus device addr	ess is 1, Channel 4~5 :the default of	device address is 2.		
The first public parameters (Refer to 5. Parameters)					
LocK NO 0000H 40001					
And so on					

Baud	NO	0003H	40004				
The Parameters of channel	The Parameters of channel 1 (Refer to 5. Parameters)						
su1(su4)~col1(col4)	-	0004H~0012H	40005~40019				
The Parameters of channel	The Parameters of channel 2 (Refer to 5. Parameters)						
Su2(su5)~ col2(col5)	-	0013H~0021H	40020~40034				
The Parameters of channel 2 (Refer to 5. Parameters)							
Su3~ col3	-	0022H~0030H	40035~40049				

Refer to this link for more information on MODBUS-RTU Communication Protocol:

http://www.kcmeter.com/servicesread.asp?id=4

Or scan QR code for more information:

Character Symbols: This manual indicates 9-segment display characters as shown below.

Α	В	С	D	E	F	G	Н	ı	J	K	L	M
R	Ь	E	d	Ε	F	G	Н	1	7	7	L	اد
N	0	Р	Q	R	S	Т	U	Υ				
n	0	P	9	۲	5	Ł	U	4				

11. Model and Suffix Code

Specifications	Model and Suffix Code							
Model	КС							
SIZE	160×80mm panel cutout :152×76mm	М						
Number of channel	5 channels	XJ5						
Number alarm	umber alarm No alarm							
1 Alarm relay out for each channel								
Input Type Current input (analog input): 4 ~ 20 mA DC, 0 ~ 10 mA DC								
Control output Relay output								
	Voltage pulse(for driving SSR)					G		
Power supply voltage 100 to 240V AC								
24V DC							1	
Communications RS-485(2-wire system: MODBUS-RTU)								RS
RS-232(3-wire system: MODBUS-RTU)								RX