CE KCM-XJ4W Multi-Loop Controller Instruction Manual

1. Features:

The temperature controller has 4 channels of sensors input and 4 channels of temperature controls.4 kinds of combinations of temperature set value, PID constant, alarm set value, etc.

1.1.Input Sensor Types

Thermocouple (temperature input): K, J, T, E, S

Resistance thermometer (temperature input): Pt100, CU50

- 1.2.Control Outputs
 - a. Relay output: relay contact: 250 V AC, 3 A (Resistive load)
 - b. SSR output: DC 0/10v voltage output (for driving SSR)

depending on the controller model.

1.3. Adjusting PID Constants

Can be easily set the optimum PID constants by performing AT (auto-tuning) with the limit cycle method.

1.4. Standard Alarms (OPTIONAL)

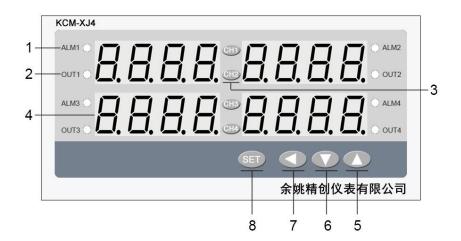
Relay contact: 250 V AC, 3 A (Resistive load).

Can be output an alarm when the deviation, process value, set point, or manipulated value reaches a specified value.

- 1.5 Sampling Time: 2 sec
- 1.6.Use this controller within the following allowable range:

Allowable ambient temperature: -0 to +55 °C Allowable ambient humidity: 5 to 85 % RH.

2. Dimensions:


M:160×80mm panel cutout :152×76mm(horizontal)

MD:72×72mm panel cutout :68×68mm

MA:96×96mm panel cutout :92×92mm

MR:88×107×59mm DIN 35 rail mounting socket

3. Parts Description:

- 1 ALM: lamp Lights when Event occurs
- 3 Channel key:

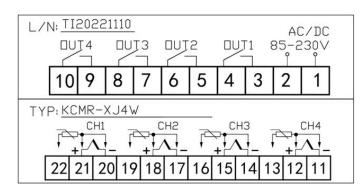
Press 'CH1~4' for 3 seconds to enter into corresponding channel menu.

5 Up key:

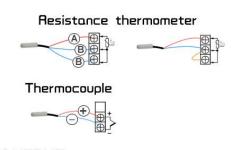
- 2 Output lamp: Lights when output is turned on
- 4 PV display:

Displays Measured value (PV)

6 Down key:


Increase numerals.

Decrease numerals


7Shift key: Shift digits when settings are changed.

8 Set (SET) key: Used for parameter calling up and set value registration.

4. Terminal Arrangement:

INPUT TYPE:

OUTPUT:

Relay contact:24-250 V AC/DC, 3 A (Resistive load)

This wiring diagram is offered for example purposes only.

Tip: Correct terminal arrangement depending on the actual model.

5. Parameters

Table 5.1

					Table 3.1
ID	Symbol	Name	Manual	Setting range	Ex-Factory
The pu	ublic paramete	rs(First level)		•	-
0	LoCY	Set data lock	LOCK=18, Set data unlock	0~50	18
O	LOLC	Set data lock	LOCK≠18, Set data lock.	0/~50	10
1	Ł5	Input type	Refer to Table 5.2	-	-
			0: Alarm function OFF;		
			1:Process high alarm;		
2	ALP	Alarm Output	2:Process low alarm;	0-6	0
۷	1161	Define	3: Deviation High alarm ;	0-0	O
			Refer to the next subsection		
			9. Alarm function		
3	FF	PID control	PID control response time		120
		cycle time	7 com o copo co		.=0
4	dР	Decimal point	0: No decimal point	0-1	1
•		Selection	1: 1 decimal digit	0 1	'
5	P5-H	Lower Limit	Lower Limit of SP and AL set value		0
6	P5-L	High Limit	High Limit of SP and AL set value		9999
7	₀Р-Ь	Communication	0:OFF: No communication 1:RS: RS485 MODBUS-RTU	0-1	off
8	Addr	Address	Communication address can be set from 1	1~255	1
9	6Aud	Baud Rate	to 255 1200; 2400; 4800; 9600;	-	9600

The Para	The Parameters of each channels (Second level)					
eg: SP o	f the first	channel show as	SPI ,SP of the second channel show as	SP2		
10	5P	Setting Values Of channel N, (N=1-4)	Set the temperature set value (SV) which is the target value for control	Determined by P-SL P-SH	100	
11	AL	Alarm setting	Refer to the next subsection 9. Alarm function		0	
12	РЬ	PV Bias	The value set in the PV bias is added to the actual input value to correct the input value.	±20.0	0.0	
13	ĽP	Proportional band	Set when PI or PID control is performance. For heating / cooling PID action. When P=0,the controller is ON/OFF control	1~100	100	
14	El	Integral time	Eliminates offset occurring in proportional control.	0~3000	500	
15	Y4	Derivative time	Prevents overshoot and/or undershoot caused by integral action effect.	0~2000S	100S	
16	НУ	Hysteresis Band	Output and alarm Hysteresis Value Refer to the next subsection: 8. OUT Relay contact On/Off mode 9. Alarm function	0.1~50.0	1.0	
17	ЯĿ	Auto tuning	AT with learning start O: AT with learning stop	0~1	0	
18	CoL	Hot/Cold	'0':reverse control(heating) '1':positive control(cooling)	0~1	0	

Table 5.2

MODEL	Input type list			
KCM V IAM	Cu50([u 5[)) -50.0∼150.0℃		Pt100(<i>P Ł 2</i>) −199.9∼600.0℃	
KCM-XJ4W	K(₺) -30.0~1300°C	E(€) -30.0~700.0°C	J (⅃)-30.0~900.0℃	
	T(₺) -199.9~400.0℃	S(5) -30∼1600°C	R (厂)-30.0∼1700.0℃	

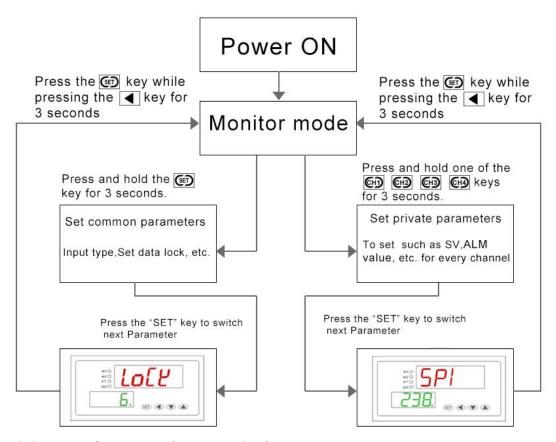
6. Operation

6.1 First level menu setting

Press and hold the \bigcirc key for 3 seconds to go to the first level menu, the controller will display the parameter symbols (0 \sim 9) on the first LED display, and display the parameter value on the second LED display.

6.2 Second level menu setting.

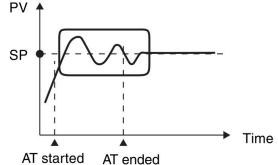
Press and hold the CH1/ CH2/ CH3 /CH4 key for 3 seconds to go to one of the channel menu level.


The controller will display the parameter symbols ($10\sim18$) on the first LED display, and display the parameter value on the second LED display.

6.3 Parameter value setting

Parameters value can be changed by pressing the ▼ key or the ▲ key.

Press the key. The display changes to the next parameter and the new value will be stored. All the Parameters can be modified when $L \circ C = 18$.


Display returns to the PV monitor if no key operation is performed within 10 seconds, and the set value will be saved.

7. Determining PID Constants(Auto-tuning)

When AT is executed, the optimum PID constants for the set point at that time are set automatically. A method (called the limit cycle method) for forcibly PV changing the manipulated variable and finding the characteristics of the control object is employed.

Set parameter HJ as 0.5, if the output is relay set the LL as 10, then set the RL as 1, in this time the controller enter into **Auto-tuning**. PV window will alternately Display "AT" and PV value, control mode is on-off mode, after 3 times vibrating(3 control period) automatic save P, I, D parameter, the self-adjusting procession finished.

Attentions:

- -The parameters of 16: HY ,3: LE ,17: AE refer to 5. Parameters
- -when **Auto-tuning**, the controller should not change the set value.
- -When the power off during Auto-tuning, it will restart Auto-tuning next time.
- -When it need artificially exit during **Auto-tuning**, set the Parameter(AT) to 0 so that can exit, but the setting result will not be valid.

8. OUT Relay contact On/Off mode

set the parameter of kp(Proportional Band)=1, When kP=0,the controller is ON/OFF control.

OUT function		OUT status[ON]	OUT status[OFF]	
positive control	∠P =0; CoL =1;	PV ≥ 5P + HY	PV ≤ 5P - HY	
reverse control	<i>ĽP</i> =0; <i>CaL</i> =0	PV ≤ 5P - HY	PV ≥ 5P + HY	
The parameters of 10: 5P ,13: LP ,16: HJ ,18: LoL refer to 5. Parameters				

9. Alarm function[OPTIONAL]

Take example for channel 1 alarm					
Alarm function	Alarm status[ON]		Alarm status[OFF]		
RLP=1	PV1≥ALI		PV1<#LI - HYI		
RLP=2	PV1 ≤ ALI		PV1>ALI + HYI		
ALP=3	PV1≥ <i>5Pl</i> + <i>RLl</i>		PV1< 5PI + ALI - HYI		
RLP=4	PV1≤ <i>5Pi</i> - <i>RLi</i>		PV1> 5PI - ALI + HYI		
RLP=5	Alarm status[ON]	PV1≤ 5P! - AL! OR PV1≥ 5P! + AL!			
nLr=3	Alarm status[OFF]	5P1 — AL1 + HY1 < PV1< 5P1 + AL1 — HY1			
	Alarm status[ON]	<i>5PI - RLI ≤</i> PV	/1≤ 5P! +AL!		
ALP=6	Alarm atatus[OFF]	PV1< 5PI — ALI — HYI OR			
Alarm status[OFF] PV1> 5Pl +			! + HY!		
The parame	The parameters of 10: 5Pl , 11: ALI , 16: HH , 2: ALP refer to 5.Parameters				

10. Host communication based on MODBUS-RTU protocol [OPTIONAL]

The master controls communication between master and slave. A typical message consists of a request (query message) sent from the master followed by an answer (response message) from the slave. When master begins data transmission, a set of data is sent to the slave in a fixed sequence. When it is received, the slave decodes it, takes the necessary action, and returns data to the master.

10.1 Communication Mode:

Data bit length	Stop bits	Parity bit	Communication time interval
8-bit (Binary)	1,2	NONE	300ms

10.2 Message length of each function (Unit: byte):

Function code	Function	Query message		Response message	
(Hexadecimal)		Min	Max	Min	Max

03H	Read holding registers	8	8	7	7
06H	Preset single register	8	8	8	8

10.3 Message format

Slave address	The slave address is a number from 1 to 255 manually set at the front key panel of the
	controller.
Function code	Refer to 2. Message length of each function
Data	The data to execute the function specified by the function code is sent to the slave and
	corresponding data returned to the master from the slave.
CRC-16	CRC-16: Cyclic Redundancy Check)

10.4 Read holding registers [03H]

The query message specifies the starting register address and quantity of registers to be read.

Slave address	Function code	Register	Quantity	CRC16	
	03H	address	The setting must be 1		
Example: The contents of the holding register 1001H are the read out from slave address 1.					
Ouery message: 01.03.10.01.00.01.D1.0A					

Query message: 01 03 10 01 00 01 D1 0A Response message: 01 03 02 **00 FD** 79 C5 Explain: 00FD=253,is processed as 25.3

10.5 Preset single register [06H]

The query message specifies data to be written into the designated holding register. Only R/W holding registers can be specified. The controller EEPROM had a life span of data written to the EEPROM less than 1000,000 times

Slave address	Function code	Register	Write data	CRC16		
		address				
Example: Data is written into the holding register 0004H of slave address 1.						
Query message: 01 06 00 04 FF 38 88 29						
_						

Response message: 01 06 00 04 FF 38 88 29

When input set value(SV) is -20.0,-20.0 is processed as -200,-200=0000H-00C8H=FF38H

10.6 No response

The slave ignores the query message and does not respond when:

- The slave address in the query message does not coincide with any slave address settings.
- The CRC code of the master does not coincide with that of the slave.
- Transmission error such as overrun, framing, parity and etc., is found in the query message.
- Set the Response Timeout >200ms and Delay between polls>200ms.

10.7 Register address list:

Symbol	Decimal point	Real Register	Holding Register		
Measured value(PV)	YES	1001H~1004H	44098~44101		
Manipulated output (MV):	NO	1101H~1104H	44354~4357		
Alarm output	NO	1201H~1204H	44610~44613		
The first public parameters (Refer to 5. Parameters)					

Lock	NO	0000H	40001						
TS	NO	0001H	40002						
and so on									
Baud	NO	0009H	40010						
The Parameters of channel 1 (Refer to 5. Parameters)									
SP1~ COL1	-	000AH~0012H	40011~40019						
The Parameters of channel	2 (Refer to 5. Parameters	s)							
SP2~ COL2	-	0013H~001BH	40020~40028						
The Parameters of channel 3 (Refer to 5. Parameters)									
SP3~ COL3	-	001CH~0024H	40029~40037						
The Parameters of channel 4 (Refer to 5. Parameters)									
SP4~ COL4	-	0025H~002DH	40038~40046						

Refer to this link for more information on MODBUS-RTU Communication Protocol:

http://www.kcmeter.com/servicesread.asp?id=4

Or scan QR code for more information:

11. Data logger to be used with KCM-XJ [OPTIONAL]

1. Features:

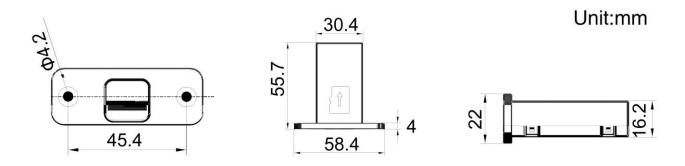
This data logger is mainly used for temperature recording during storage of foodstuff, medicine, chemicals and other products, such as refrigerated trucks refrigerated package, cold storage, laboratory, etc.

This Data Logger adjustable record intervals for convenient and reliable temperature data recording, monitoring and analysis.

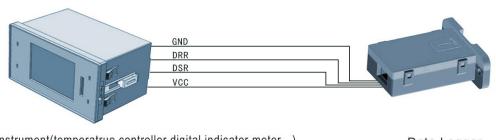
This Data Logger's data could be queried, saved, printed and exported in Excel/TXT format through USB interface.

And it comes with data management software for easy data download to computers through USB interface. With the software, you could analyze data in form of tables and graphs.

2. Specification:


Data storage options: TF / Micro SD Card Record interval: 1s~1hour adjustable

Record capacity: A 1GB Micro SD Card can hold more than 15,768,000 points of data


Work environment

Allowable ambient temperature: −0 to +55 °C Allowable ambient humidity: 5 to 85 % RH.

3.Dimensions:

4. Wiring diagram:

Instrument(temperatrue controller, digital indicator meter...)

Data Logger

5. Operation:

- 1. Wiring: Connect the data logger to the instrument. Refer to 4. wiring diagram
- 2.Power On: when turn on the instrument ,the data logger will work.
- 3. Start recording: when insert a TF card into the logger data, the data logger will start recording
- 4. Set the interval time: Rddr (ADDR):1S~3600S.

Refer to the manual of the instrument for the parameter of the "ADDR".

5. Set the system time:

Press and hold the ▲key and ▼key for 1 second on the instrument, the monitor screen of the instrument will be went to the "set system time mode".

For setting parameters such as year, moth, day... refer to the instrument 's parameter setting.

Parameter list on the instrument for the time system:

T3-1

ID	Symbol	Name	Data range	Factory set value			
1	YEAr	Year	2000~2099	20xx			
2	ñŁH	Month	00~12	_			
3	487	Day	00~31	_			
4	Kour	Hour	00~23	_			
5	ñIn	Minute	00~59	_			

6. Red lamp/Green lamp on the logger lights recognition to the logger state:

1. Normal mode:

The green lamp lights at all times, the red lamp flashes(fast) when logger writes the data.

2. Communication failed:

At intervals there is green lamp lights(flash).

3. Be interfered by other signals:

At intervals there is green lamp and red lamp light(flash)

4. TF card is abnormal:

At intervals there is red lamp lights(flash).

11. Model and Suffix Code

Specifications	Model and Suffix Code							
Model	КС							
SIZE	160×80mm panel cutout :152×76mm	М						
	96×96mm panel cutout :92×92mm	MA						
	72×72mm panel cutout :68×68mm	MD						
	88×107×59mm DIN 35 rail mounting socket	MR						
Number of channel	4 channels	XJ4						
Number alarm	No alarm							
	1 Alarm relay out for each channel	1						
Input Type	Thermocouple: K, E,J, R, S, T,RTD: Pt100, Cu50	W						
Control output	Relay output							
	Voltage pulse(for driving SSR)							
Power supply voltage	100 to 240V AC							
	24V DC							
Communications	RS-485(2-wire system: MODBUS-RTU)							RS
	RS-232(3-wire system: MODBUS-RTU)							

Character Symbols: This manual indicates 9-segment display characters as shown below.

Α	В	С	D	E	F	G	Н	ı	J	K	L	M
R	Ь	E	В	E	F	<u>G</u>	Н	1	3	7	L	ñ
N	0	Р	Q	R	S	Т	U	Υ				
п	o	Р	9	٢	5	Ł	u	3				