CE KCM-XJ4A Multi-Loop Controller Instruction Manual

1. Features:

The temperature controller has 4 channels of sensors input and 4 channels of temperature controls.4 kinds of combinations of temperature set value, PID constant, alarm set value, etc.

1.1.Input Sensor Types

-Current input (analog input): 4 ~ 20 mA DC, 0 ~ 10 mA DC

1.2.Control Outputs

a. Relay output: relay contact: 250 V AC, 3 A (Resistive load)

b. SSR output: DC 0/10v voltage output (for driving SSR)

depending on the controller model.

1.3.Adjusting PID Constants

Can be easily set the optimum PID constants by performing AT (auto-tuning) with the limit cycle method.

1.4. Standard Alarms (OPTIONAL)

Relay contact:250 V AC, 3 A (Resistive load).

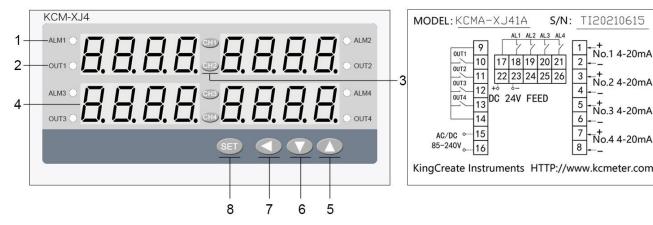
Can be output an alarm when the deviation, process value, set point, or manipulated value reaches a specified value.

1.5 Sampling Time: 2 sec

1.6.Use this controller within the following allowable range:

Allowable ambient temperature: -0 to +55 °C

Allowable ambient humidity: 5 to 85 % RH.


2. Dimensions:

M:160×80mm panel cutout :152×76mm(horizontal) MD:72×72mm panel cutout :68×68mm

MA:96×96mm panel cutout :92×92mm MR:88×107×59mm DIN 35 rail mounting socket

3. Parts Description:

Tip: Correct terminal arrangement depending on the actual model.

1 ALM: lamp Lights when Event occurs

3 Channel key:

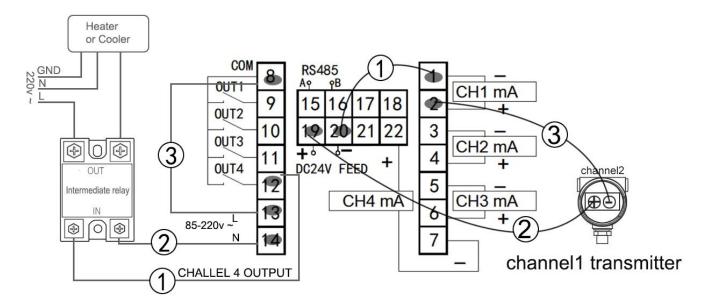
Can be press 'CH1~2' for 3 seconds to enter into corresponding channel menu.

2 Output lamp: Lights when output is turned on 4 PV display:

4-20mA

Displays Measured value (PV)

6 Down key:


5 Up key:

Increase numerals.

7Shift key: Shift digits when settings are changed.

Decrease numerals 8 Set (SET) key: Used for parameter calling up and set value registration.

4. Terminal Arrangement:

This wiring diagram is offered for example purposes only. *Tip: Correct terminal arrangement depending on the actual model.*

5. Parameters

ID	Symbol	Name	Manual	Setting	Ex-Factory
The publi	c parameter	range			
0	LoEY	Set data lock	LOCK=18, Set data unlock LOCK≠18, Set data lock.	0~50	18
1	оР-Ь	Communication	0:no output; 1:RS232 or RS485;	0~4	-
2	Rddr	Address	Communication address can be set from 0 to 255	0-255	1
3	bRud	Baud Rate	1200; 2400; 4800; 9600;		9600
The Para	meters of	each channels(Sec	ond level)		
4	5u	Setting value	Set the temperature set value (SV) which is the target value for control	Determined by P-SL P-SH	100
5	ЯL	Alarm value	For more information, Refer to 8. Alarm function		0
6	50	PV Bias	The value set in the PV bias is added to the actual input value to correct the input value.	±20.0	0.0

			Set when PI or PID control is		
	_	Proportional	performance. For heating / cooling PID		100
7	7 <i>P</i>	band	action.	1~100	100
			When P=0,the controller is ON/OFF		
			control		
8	1	Integral time	Eliminates offset occurring in proportional	0~3000	500
_	,		control.		
9	Ь	Derivative time	Prevents overshoot and/or undershoot	0∼2000S	100S
Ŭ			caused by integral action effect	0 20000	
			Output and alarm Hysteresis Value		
10	НУ	Differential gap	Refer to the next subsection:	0.1~50.0	1.0
10		Differential gap	9. OUT Relay contact On/Off mode	0.1 00.0	
			8. Alarm function		
11	E	PID control	PID control response time	2~120	20S
	L	cycle.		2 120	200
		Decimal point	Set the position of the decimal point for		
12	dP	position	the measured value to be displayed.	0~3	0
		selection	the measured value to be displayed.		
			0: Alarm function OFF;		
			1:Process high alarm;		
13	RLP	Alarm type	2:Process low alarm;	0~6	-
			For more information,		
			Refer to 8. Alarm function		
14	Sn	Input type	4-20mA(/ _ 5 u) 0∼20mA(/ / 5 u)		1_ Su
15	di L	Range high	Input range (high)	P-SL~9999	0
16	dl H	Range low	Input range (low)	-1999~P-SH	9999
17			1: AT with learning start	0~1	0
17	RĿ	Auto tuning	0: AT with learning stop	U ^r ~ 1	U
10	F _1	List/Cold	'0':reverse control(heating)	0 - 1	0
18	EoL	Hot/Cold	'1':positive control(cooling)	0~1	0

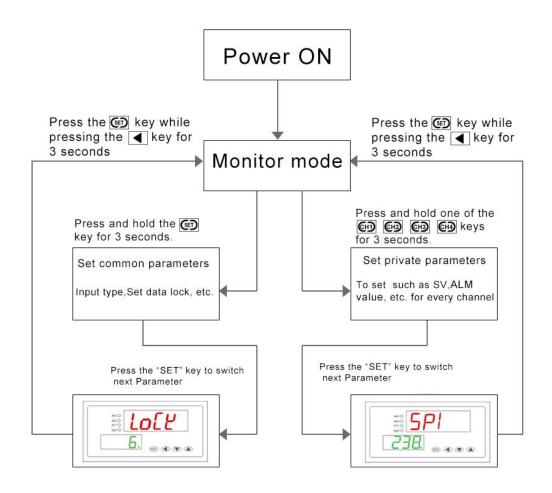
6. Operation

6.1 First level menu setting

Press and hold the key for 3 seconds to go to the first level menu, the controller will display the parameter symbols (0 \sim 3) on the first LED display, and display the parameter value on the second LED display.

6.2 Second level menu setting.

Press and hold the CH1/ CH2/ CH3 /CH4 key for 3 seconds to go to one of the channel menu level. The controller will display the parameter symbols ($4 \sim 18$) on the first LED display, and display the parameter value on the second LED display.


6.3 Parameter value setting

Press ◀ key to go to a different digit.

Parameters value can be changed by pressing the $\mathbf{\nabla}$ key or the \mathbf{A} key.

Press the D key. The display changes to the next parameter and the new value will be stored. All the Parameters can be modified when $L \ c \ c \ d = 18$.

Display returns to the PV monitor if no key operation is performed within 10 seconds , and the set value will be saved.

7.Determining PID Constants(Auto-tuning)

When AT is executed, the optimum PID constants for the set point at that time are set automatically. A

method (called the limit cycle method) for forcibly changing the manipulated variable and finding the characteristics of the control object is employed.

Set parameter H_{2}^{U} as 0.5, if the output is relay set the E as 10, then set the R_{2}^{L} as 1, in this time the controller enter into **Auto-tuning**. PV window will alternately Display "AT" and PV value, control mode is on-off mode, after 3 times vibrating(3 control period) automatic save P, I, D parameter, the self-adjusting procession finished.

PV SP AT started AT ended

Attentions:

-The parameters of 10: H_{J} ,11: ξ ,17: H_{L} refer to 5.Parameters -when **Auto-tuning**, the controller should not change the set value.

-When the power off during Auto-tuning, it will restart Auto-tuning next time.

-When it need artificially exit during **Auto-tuning**, set the Parameter(AT) to 0 so that can exit, but the setting result will not be valid.

8. Alarm function[OPTIONAL]

Take example for channel 1 alarm				
Alarm function	Alarm status[ON]		Alarm status[OFF]	
RLP=1	PV1≥#Ll		PV1<71Li — HYi	
RLP=2	PV1 <u>≤</u> ₽Ll		PV1>ALI + HYI	
RLP=3	PV1≥ 5⊔/ +RL/		PV1< 5ul + ALI - HYI	
RLP=4	PV1≤ 5⊔l — RLl		PV1> 5ul — ALI + HYI	
	<u>.</u>			
ALP=5	Alarm status[ON]	PV1≤ 5⊔l — RL	/ <mark>OR</mark> PV1≥ 5⊔/ + ALI	
ULL=0	Alarm status[OFF] $5 a - RL + b$		ושא < PV1< 5 וו + RLI – HYI	
	Alarm status[ON]	Sul — ALI ≤ PV1≤ Sul + ALI		
RLP=6		PV1 < 5ul - ALI - HYI OR		
Alarm status[OFF]		PV1 > 5ul + RLl + HYl		
The parame	eters of 4: 5، <i>4</i> ، 5: F	ובו <mark>, 1</mark> 0: אין , 1	3: <i>RLP</i> refer to 5.Parameters	

9. OUT Relay contact On/Off mode

Set the parameter of P (Proportional Band)=1, When P=0, the controller is ON/OFF control.

OUT function		OUT status[ON]	OUT status[OFF]	
positive control	P =0; CoL =1;	PV ≥ 5u 🕂 HY	PV ≤ 5⊔ − HY	
reverse control	P =0; [al =0	PV ≤ 5∪ — НУ	PV ≥ 5u + HY	
The parameters of 4: 5_{\Box} , 7: P , 10: H_{\Box} , 18: $\mathcal{L}_{\Box}L$ refer to 5.Parameters				

10. Host communication based on MODBUS-RTU protocol [OPTIONAL]

The master controls communication between master and slave. A typical message consists of a request (query message) sent from the master followed by an answer (response message) from the slave. When master begins data transmission, a set of data is sent to the slave in a fixed sequence. When it is received, the slave decodes it, takes the necessary action, and returns data to the master.

10.1 Communication Mode:

Data bit length	Stop bits	Parity bit	Communication time interval
8-bit (Binary)	1,2	NONE	300ms

10.2 Message length of each function (Unit: byte):

Function code Function	Query message	Response message
------------------------	---------------	------------------

(Hexadecimal)		Min	Max	Min	Max
03H	Read holding registers	8	8	7	7
06H	Preset single register	8	8	8	8

10.3 Message format

Slave address	The slave address is a number from 1 to 255 manually set at the front key panel of the controller.
Function code	Refer to 2. Message length of each function
Data	The data to execute the function specified by the function code is sent to the slave and corresponding data returned to the master from the slave.
CRC-16	CRC-16: Cyclic Redundancy Check)

10.4 Read holding registers [03H]

The query message specifies the starting register address and quantity of registers to be read.

	v i	0 0	. , ,				
Slave address	Function code	Register	Quantity	CRC16			
	03H	address	The setting must be 1				
Example: The cor	Example: The contents of the holding register 1001H are the read out from slave address 1.						
Query message: 01 03 10 01 00 01 D1 0A							
Response message: 01 03 02 00 FD 79 C5							
Explain: 00FD=253, is processed as 25.3							

10.5 Preset single register [06H]

The query message specifies data to be written into the designated holding register. Only R/W holding registers can be specified. The controller EEPROM had a life span of data written to the EEPROM less than 1000,000 times

Slave address	Function code	Register	Write data	CRC16		
		address				
Example: Data is written into the holding register 0004H of slave address 1.						
Query message: 01 06 00 04 FF 38 88 29						
Response message: 01 06 00 04 FF 38 88 29						
When input set va	When input set value(SV) is -20.0,-20.0 is processed as -200,-200=0000H-00C8H=FF38H					

10.6 No response

The slave ignores the query message and does not respond when:

- The slave address in the query message does not coincide with any slave address settings.
- The CRC code of the master does not coincide with that of the slave.
- Transmission error such as overrun, framing, parity and etc., is found in the query message.
- Set the Response Timeout >200ms and Delay between polls>200ms.

10.7 Register address list:

Symbol	Decimal point	Real Register	Holding Register
Measured value(PV)	YES	PV1:1001H~PV4:1004H	44098~44101
The first public parameters (Refer to 5. Parameters)		

LocK	NO	0000H	40001				
And so on							
Baud	NO	0003H	40004				
The Parameters of channel 1 (Refer to 5. Parameters)							
su1~col1	-	0004H~0012H	40005~40019				
The Parameters of channel	2 (Refer to 5. Parameter	s)					
Su2~ col2	-	0013H~0021H	40020~40034				
The Parameters of channel	2 (Refer to 5. Parameter	s)					
Su3~ col3	-	0022H~0030H	40035~40049				
The Parameters of channel 2 (Refer to 5. Parameters)							
Su4~ col4	-	0031H~003FH	40050~40064				

Refer to this link for more information on MODBUS-RTU Communication Protocol:

http://www.kcmeter.com/servicesread.asp?id=4

Or scan QR code for more information:

Character Symbols : This manual indicates 9-segment display characters as shown below.

Α	В	С	D	E	F	G	Н	I	J	К	L	М
8	Ь	Ľ	d	Ε	F	G	Н	1	J	Ľ	L	ñ
Ν	0	Р	Q	R	S	Т	U	Y				
n	٥	ρ	9	r	5	Ł	U	9				

11. Model and Suffix Code

Specifications	ecifications Model and Suffix Code							
Model	КС							
SIZE	160×80mm panel cutout :152×76mm	М						
	96×96mm panel cutout :92×92mm	MA						
	72×72mm panel cutout :68×68mm	MD						
	88×107×59mm DIN 35 rail mounting socket	MR						
Number of channel	mber of channel 4 channels XJ4							
Number alarm	No alarm							
	1 Alarm relay out for each channel							
Input Type	Type Current input (analog input): 4 ~ 20 mA DC, 0 ~ 10 mA DC							
Control output	Relay output							
	Voltage pulse(for driving SSR)		G					
Power supply voltage	100 to 240V AC							
	24V DC						1	
Communications RS-485(2-wire system: MODBUS-RTU) RS-232(3-wire system: MODBUS-RTU)							•	RS
							RX	