(E KCM-XJ21W Multi-Loop Controller Instruction Manual

1. Features:

The temperature controller has double channels of sensors input and 2 channels of temperature controls.2 kinds of combinations of temperature set value, PID constant, alarm set value, etc.

1.1.Input Sensor Types

Thermocouple (temperature input): K, J, T, E, S

Resistance thermometer (temperature input): Pt100, CU50

Or Current input (analog input): 4 ~ 20 mA DC, 0 ~ 10 mA DC depending on the controller model.

1.2.Control Outputs

- a. Relay output: relay contact: 250 V AC, 3 A (Resistive load)
- b. SSR output: DC 0/10v voltage output (for driving SSR)

depending on the controller model.

1.3. Adjusting PID Constants

Can be easily set the optimum PID constants by performing AT (auto-tuning) with the limit cycle method.

1.4. Standard Alarms (OPTIONAL)

Relay contact:250 V AC, 3 A (Resistive load).

Can be output an alarm when the deviation, process value, set point, or manipulated value reaches a specified value.

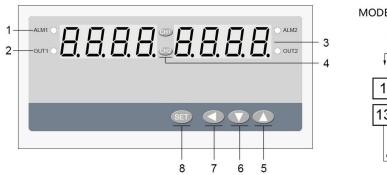
- 1.5 Sampling Time: 2 sec
- 1.6.Use this controller within the following allowable range:

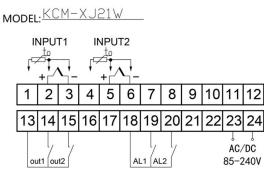
Allowable ambient temperature: −0 to +55 °C Allowable ambient humidity: 5 to 85 % RH.

2. Dimensions:

M:160×80mm panel cutout :152×76mm(horizontal)

MD:72×72mm panel cutout :68×68mm


MF:96×48×85mm panel cutout :92×44mm


MA:96×96mm panel cutout :92×92mm

MG:48×48mm panel cutout :45×45mm

MR:88×107×59mm DIN 35 rail mounting socket

3. Parts Description:

This wiring diagram is offered for example purposes only.

1 ALM: lamp Lights when Event occurs

3 PV display:

Displays Measured value (PV)

2 Output lamp: Lights when output is turned on

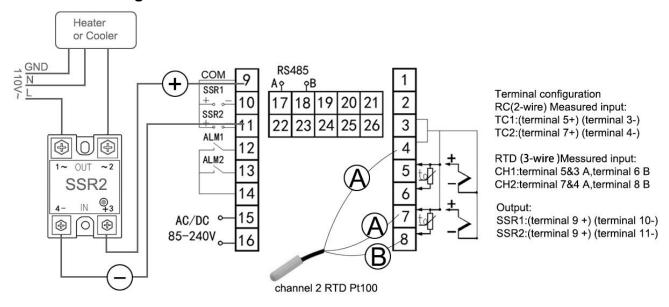
4 Channel key:

Can be press 'CH1~2' for 3 seconds to enter into

corresponding channel menu.

6 Down key:

Decrease numerals


8 Set (SET) key: Used for parameter calling up and set value registration.

5 Up key:

Increase numerals.

7Shift key: Shift digits when settings are changed.

4. Terminal Arrangement:

This wiring diagram is offered for example purposes only.

Tip: Correct terminal arrangement depending on the actual model.

5. Parameters

Table 5.1

					Table 5.1	
ID	Symbol	Name	Manual	Setting	Ex-Factory	
וט	Symbol	Name	Maridai	range	LX-I actory	
The publ	ic paramete	rs(First level)				
0	Lock	Set data lock	LOCK=18, Set data unlock	0∼50	10	
U	LOCC	Set data lock	LOCK≠18, Set data lock.	0, 50	18	
1	Ł	PID control	PID control response time	2~120	10	
ı		cycle.	Control response time	2120	10	
2	οΡЬ	Communication	0:no output;	0-2	1	
2	oro		1:RS232 or RS485;	0-2		
3	Rdd	ਮੋਰੀ Address	Communication address can be set from 0	0-255	1	
3	n00	Address	to 255	0-255	1	
4	bRud	Baud Rate	1200; 2400; 4800; 9600;	0-4	1	
The Para	ameters of	each channels(Sec	ond level)			
5	Sn	Input type	Refer to Table 5.2	-	-	

	1		T			
1			0: Alarm function OFF;			
			1:Process high alarm;			
6	RLP	Alarm type	2:Process low alarm;	0∼6	1	
			For more information,			
			Refer to 8. Alarm function			
7	SP	Setting value	Set the temperature set value (SV) which	Determined	100	
,	יוכ	Setting value	is the target value for control	by P-SL	100	
8	RL	Alarm set value	For more information,	P-SH	200	
0	ΠL	Alaim Set value	Refer to 8. Alarm function	F-3H	200	
			The value set in the PV bias is added to			
9	SE	PV Bias	the actual input value to correct the input	±20.0	0	
			value.			
			Set when PI or PID control is			
10	P	Proportional band	performance. For heating / cooling PID	1~100	0	
10			action.	1/~100	U	
			When P=0,the meter is ON/OFF control			
11	1	Integral time	Eliminates offset occurring in proportional	0~3000	500	
11	1	integral time	control.	0° 3000	300	
12	d	Derivative time	Prevents overshoot and/or undershoot	0∼2000S	100S	
12	0	Denvalive line	caused by integral action effect	0.320003		
13	RE	A. da A. da in a	1: AT with learning start	0~1	0	
13	חכ	Auto tuning	0: AT with learning stop	0, 0	0	
			Output and alarm Hysteresis Value			
14	HY	Differential gap	Refer to the next subsection:	0.1~50.0	1.0	
14	כח	Dilleteritial gap	9. OUT Relay contact On/Off mode	0.17~50.0	1.0	
			8. Alarm function			
15	[oL	Hot/Cold	0:reverse control(heating)	0~1	0	
13	LOL	i ioi/Coid	1:positive control(cooling)	U ~ 1		
16	dР	Decimal point	0: No decimal point	0∼3	0	
10	σr	selection	1: 1 decimal digit	ິ້ວ 	0	
17	P5H	Range high	Input range (high)	P-SL \sim 9999	-	
18	P5 L	Range low	Input range (low)	-1999∼P-SH	-	

Table 5.2

MODEL	Input type list						
	Cu50([u 5 l])		Pt100(P £ 2)				
Temperature	–50.0∼150.0°C		–199.9∼600.0℃				
sensor	K(<i>Ľ</i>) -30.0∼1300℃	E(€) -30.0~700.0°C	J (᠘)-30.0~900.0℃				
	T(ಓ) -199.9∼400.0℃	S(5) -30∼1600°C					
Analog input	$0{\sim}50$ mV($m{D}_{-}$ $m{5}$ $m{D}$);	10 \sim 50mV(\emph{H}_{-} 5 \emph{G})	0~5V/0~10mA(Ū_5 <i>u</i>)				
(Optional)	1~5V/4~20mA(/ _ 5 ∪)						
(• p,	DC input is single-option, d	epending on the actual mod	e.				

6. Operation

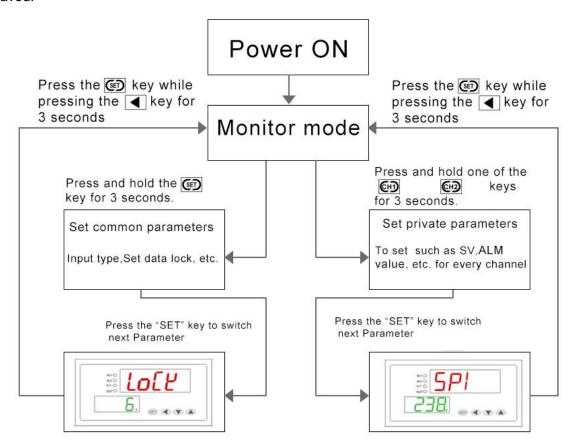
6.1 First level menu setting

Press and hold the (0^4) key for 3 seconds to go to the first level menu, the controller will display the parameter symbols (0^4) on the first LED display, and display the parameter value on the second LED display.

6.2 Second level menu setting.

Press and hold the CH1/CH2 key for 3 seconds to go to one of the channel menu level.

The controller will display the parameter symbols (5 \sim 18) on the first LED display, and display the parameter value on the second LED display.


6.3 Parameter value setting

Press ◀ key to go to a different digit.

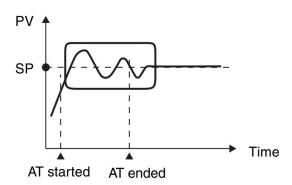
Parameters value can be changed by pressing the ▼ key or the ▲ key.

Press the \bigcirc key. The display changes to the next parameter and the new value will be stored. All the Parameters can be modified when $\angle oc \angle = 18$.

Display returns to the PV monitor if no key operation is performed within 10 seconds, and the set value will be saved.

7. Determining PID Constants (Auto-tuning)

When AT is executed, the optimum PID constants for the set point at that time are set automatically. A method (called the limit cycle method) for forcibly changing the manipulated variable and finding the characteristics of the control object is employed.


Set parameter HJ as 0.5, if the output is relay set the L as 10, then set the RL as 1, in this

time the controller enter into **Auto-tuning**. PV window will alternately Display "AT" and PV value, control mode is on-off mode, after 3 times vibrating(3 control period) automatic save P, I, D parameter, the self-adjusting procession finished.

-The parameters of 14: H⅓ ,1: Ł ,13: RŁ refer to 5.Parameters

-when **Auto-tuning**, the controller should not change the set value.

- -When the power off during **Auto-tuning**, it will restart **Auto-tuning** next time.
- -When it need artificially exit during **Auto-tuning**, set the Parameter(AT) to 0 so that can exit, but the setting result will not be valid.

8. Alarm function

Take the first channel's alarm as an example							
Alarm type	Alarm status[O	N]	Alarm status[OFF]				
<i>PLP</i> =1:high alarm	PV1≥ALI		PV1				
RLP=2:low alarm	PV1 ≤ ALI		PV1>ALI + HYI				
FLP=3:Deviation High	PV1≥ <i>5Pl</i> +	RLI	PV1< 5PI + ALI - HYI				
RLP=4:Deviation low	PV1≤ <i>5P!</i> —	RLI	PV1> 5PI - ALI + HYI				
RLP=5:Outside the Band	[ON]	PV1≤ <i>5P! — AL!</i> 或 PV1≥ <i>5P! 十AL!</i>					
TEF=5.Outside the Band	[OFF]	5PI — ALI + HYI < PV1< 5PI + ALI — HYI					
	[ON]	5PI — ALI ≤ PV1≤ 5PI + ALI					
<i>RLP</i> =6:Band alarm	IOFF1	PV1< 5PI — ALI — HYI OR					
	[OFF]	PV1> 5PI + ALI + HYI					
<i>RLP</i> =7:Difference alarm	[ON]	PV1 - PV2≥ALI					
TIET = 1.Dilletelice diatili	[OFF]	PV1 - PV2<#L1 - HY1					
PV1 is the fist channel's Measured value, PV2 is the second channel's Measured value.							

9. OUT Relay contact On/Off mode

Set the parameter of P (Proportional Band)=1, When P=0,the controller is ON/OFF control.

OUT function		OUT status[ON]	OUT status[OFF]			
positive control	P =0; CaL =1;	PV ≥ 5P + HY	PV ≤ 5 <i>P</i> - HY			
reverse control	P =0; CaL =0	PV ≤ 5P - HY	PV ≥ 5P + HY			
The parameters of 7: 5P , 10: P , 14: HY , 15:EaL refer to 5.Parameters						

10. Host communication based on MODBUS-RTU protocol[OPTIONAL]

The master controls communication between master and slave. A typical message consists of a request (query message) sent from the master followed by an answer (response message) from the slave. When master begins data transmission, a set of data is sent to the slave in a fixed sequence. When it is received, the slave decodes it, takes the necessary action, and returns data to the master.

10.1 Communication Mode:

Data bit length	Stop bits	Parity bit	Communication time interval
8-bit (Binary)	1,2	NONE	300ms

10.2 Message length of each function (Unit: byte):

Function code	Function	Query me	essage	Response message		
(Hexadecimal)	Function	Min	Max	Min	Max	
03H	Read holding registers	8	8	7	7	
06H	Preset single register	8	8	8	8	

10.3 Message format

Slave address	The slave address is a number from 1 to 255 manually set at the front key panel of the
	controller.
Function code	Refer to 2. Message length of each function
Data	The data to execute the function specified by the function code is sent to the slave and
	corresponding data returned to the master from the slave.
CRC-16	CRC-16: Cyclic Redundancy Check)

10.4 Read holding registers [03H]

The query message specifies the starting register address and quantity of registers to be read.

Slave address	lave address Function code		Quantity	CRC16				
	03H	address	The setting must be 1					
Example: The contents of the holding register 1001H are the read out from slave address 1.								
Query message: 01 03 10 01 00 01 D1 0A								
Response message: 01 03 02 00 FD 79 C5								

10.5 Preset single register [06H]

Explain: 00FD=253,is processed as 25.3

The query message specifies data to be written into the designated holding register. Only R/W holding registers can be specified. The controller EEPROM had a life span of data written to the EEPROM less than 1000,000 times

Slave address	Function code	Register	Write data	CRC16			
		address					
Example: Data is written into the holding register 0004H of slave address 1.							
Query message: 01 06 00 04 FF 38 88 29							
Response message: 01 06 00 04 FF 38 88 29							

When input set value(SV) is -20.0,-20.0 is processed as -200,-200=0000H-00C8H=FF38H

10.6 No response

The slave ignores the query message and does not respond when:

- The slave address in the query message does not coincide with any slave address settings.
- The CRC code of the master does not coincide with that of the slave.
- Transmission error such as overrun, framing, parity and etc., is found in the query message.
- Set the Response Timeout >200ms and Delay between polls>200ms.

10.7 Register address list:

Symbol	Decimal point	Real Register	Holding Register						
Messured value(PV)	YES	1001H~1002H	44098~44099						
The first public parameters (Refer to 5. Parameters)									
LocK	NO	0000H	40001						
And so on	And so on								
Baud	NO	0004H	40005						
The Parameters of channel	1 (Refer to 5. Parameter	s)							
sn1~ PSL 1	sn1~ PSL 1 - 0005H~0012H 40006~40019								
The Parameters of channel 2 (Refer to 5. Parameters)									
sn2~ PSL 2	-	0013H~0020H	40020~40033						

Refer to this link for more information on MODBUS-RTU Communication Protocol:

http://www.kcmeter.com/servicesread.asp?id=4

Or scan QR code for more information:

Character Symbols: This manual indicates 9-segment display characters as shown below.

Α	В	С	D	E	F	G	Н	I	J	K	L	M
R	Ь	E	Ъ	E	F	L L	Н	1	7	2	L	ō
N	0	Р	Q	R	S	Т	U	Υ				
n	o	P	9	r	5	Ł	ט	9				

11. Model and Suffix Code

Specifications	Model and Suffix Code							
Model	КС							
SIZE	160×80mm panel cutout :152×76mm	М						
	96×96mm panel cutout :92×92mm	MA						
	72×72mm panel cutout :68×68mm	MD						
	48×48mm panel cutout :44×44mm	MG						
	96×48mm panel cutout :92×44mm	MF						
	88×107×59mm DIN 35 rail mounting socket	MR						
Number of channel	2 channels		XJ2					
Number alarm	1 Alarm relay out for each channel 1							
Input Type	Thermocouple: K, E,J, R, S, T,RTD : Pt100, Cu50 W				W			
	Thermocouple, RTD, DC voltage or Current Fixed input type per channel M							
Control output	Control output Relay output							
Voltage pulse(for driving SSR)						G		
Power supply voltage 100 to 240V AC						-		
	24V DC						1	
Communications	RS-485(2-wire system: MODBUS-RTU)						RS	
	RS-232(3-wire system: MODBUS-RTU)						RX	