

1. Features:

The temperature controller has 8 channels of analog Signal 4-20mA sensors input and 8 channels of temperature controls.8 kinds of combinations of temperature set value, PID constant, alarm set value, etc.

1.1.Input Sensor Types

Thermocouple (temperature input): K, J, T, E, S

Resistance thermometer (temperature input): Pt100, CU50

Or Current input (analog input): 4 ~ 20 mA DC, 0 ~ 10 mA DC depending on the controller model.

1.2.Control Outputs

- a. Relay output: relay contact: 250 V AC, 3 A (Resistive load)
- b. SSR output: DC 0/10v voltage output (for driving SSR)

depending on the controller model.

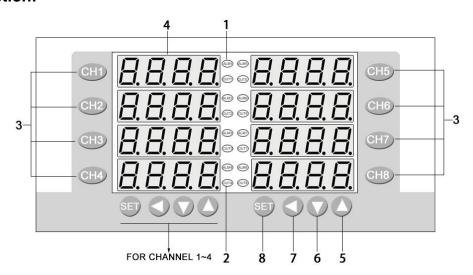
1.3. Adjusting PID Constants

Can be easily set the optimum PID constants by performing AT (auto-tuning) with the limit cycle method.

1.4. Standard Alarms (OPTIONAL)

Relay contact:250 V AC, 3 A (Resistive load).

Can be output an alarm when the deviation, process value, set point, or manipulated value reaches a specified value.


- 1.5 Sampling Time: 2 sec
- 1.6.Use this controller within the following allowable range:

Allowable ambient temperature: -0 to +55 °C Allowable ambient humidity: 5 to 85 % RH.

2. Dimensions:

hxwxd(Unit: mm) 160x80x85 Panel cutout 152x76

3. Parts Description:

1 ALM: lamp Lights when Event occurs

3 Channel key:

You can press 'CH1~8' for 3 seconds to enter into corresponding channel menu.

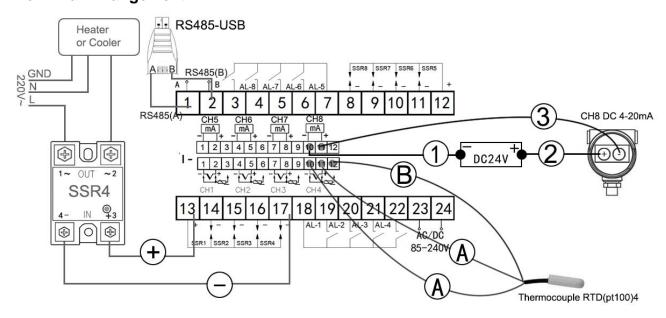
5 Up key:

2 Output lamp: Lights when output is turned on

4 PV display:

Displays Measured value (PV)

6 Down key:


Increase numerals.

7Shift key: Shift digits when settings are changed.

Decrease numerals

8 Set (SET) key: Used for parameter calling up and set value registration.

4. Terminal Arrangement:

This wiring diagram is offered for example purposes only.

Tip: Correct terminal arrangement depending on the actual model.

5. Parameters

Table 5.1

la la							
ID	Symbol	Name	Manual	Setting	Ex-Factory		
	Cymbol	Name	Mariadi	range	Lx i dotory		
The publ	ic paramete	rs(First level)					
0	1 U	Set data lock	LOCK=18, Set data unlock	0∼50	18		
0	Loce	Set data lock	LOCK≠18, Set data lock.	0,~50	10		
1	Ł	PID control	PID control response time	2~120	10		
	L	cycle.	FID Control response time	2. 3 120	10		
2	оРЬ	Communication	0:no output;	0-2	1		
	OFO	Communication	1:RS232 or RS485;	0-2	'		
3	Rdd	Address	Communication address can be set from 0	0-255	1		
3	nou	Address	to 255	0-233			
4	bRud	Baud Rate	1200; 2400; 4800; 9600;	0-4	1		
The Para	ameters of	each channels(Sec	ond level)				
5	Sn	Input type	Refer to Table 5.2	-	-		
			0: Alarm function OFF;				
			1:Process high alarm;				
6	RLP	Alarm type	2:Process low alarm;	0∼6	1		
			For more information,				
			Refer to 8. Alarm function				

	T		T		I	
7	50	Setting value	Set the temperature set value (SV) which	Determined	100	
		<u> </u>	is the target value for control	by P-SL		
8	RL	Alarm set value	For more information,	P-SH	200	
0	111	Alaim Set Value	Refer to 8. Alarm function	1 011	200	
			The value set in the PV bias is added to			
9	SE	PV Bias	the actual input value to correct the input	±20.0	0	
			value.			
			Set when PI or PID control is			
40		Proportional	performance. For heating / cooling PID	4 400		
10	P	band	action.	1~100	0	
			When P=0,the meter is ON/OFF control			
44	,	Later and Cons	Eliminates offset occurring in proportional	0.000	500	
11	1	Integral time	control.	0~3000	500	
40		David all a line	Prevents overshoot and/or undershoot	0.0000	4000	
12	d	Derivative time	caused by integral action effect	0∼2000S	100S	
40	O.		1: AT with learning start	0 4	0	
13	RE.	Auto tuning	0: AT with learning stop	0~1	0	
			Output and alarm Hysteresis Value			
	100	D.W	Refer to the next subsection:		4.0	
14	HS	Differential gap	9. OUT Relay contact On/Off mode	0.1~50.0	1.0	
			8. Alarm function			
4.5	. .	11.40	0:reverse control(heating)			
15	EoL	Hot/Cold	1:positive control(cooling)	0~1	0	
4.0	10	Decimal point	0: No decimal point		2	
16	dР	selection	1: 1 decimal digit	0~3	0	
17	PSH	Range high	Input range (high)	P-SL∼9999	-	
18	PSL	Range low	Input range (low)	-1999∼P-SH	-	
			1	I	l	

Table 5.2

MODEL	Input type list						
	Cu50([+ 50)		Pt100(P <i>L 2</i>)				
Temperature	–50.0∼150.0°C		–199.9∼600.0℃				
sensor	K(<i>Ľ</i>) -30.0∼1300℃	E(<i>E</i>) -30.0∼700.0℃	J (ܠ)-30.0∼900.0℃				
	T(ಓ) -199.9∼400.0℃	S(5) -30∼1600°C					
Analog input	$0{\sim}50$ m $V(\vec{U}5\vec{U});$	10∼50mV(A _ 5[)	0~5V/0~10mA(Ū <u>_</u> 5 <u>u</u>)				
(Optional)	ر <i>ن</i> 5 ا 1~5V/4~20mA(ا _ 5 س)						
(DC input is single-option, depending on the actual mode.						

6. Operation

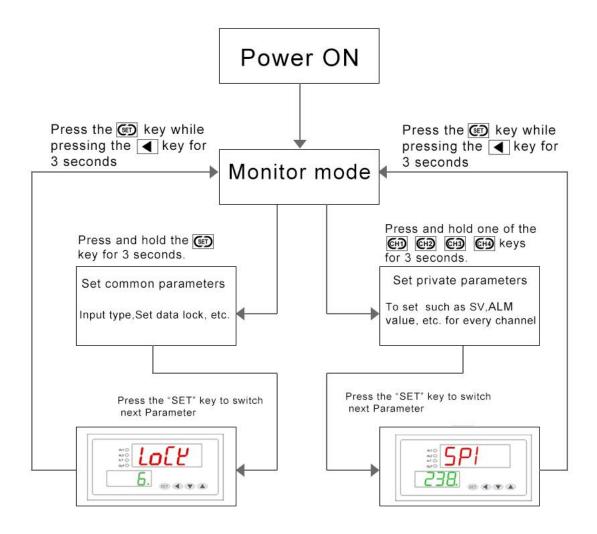
6.1 First level menu setting

Press and hold the \bigcirc key for 3 seconds to go to the first level menu, the controller will display the parameter symbols (0 \sim 4) on the first LED display, and display the parameter value on the second LED display.

6.2 Second level menu setting.

Press and hold the CH1/ CH2/ CH3 /CH4/CH5/CH6/CH8 key for 3 seconds to go to one of the channel menu level.

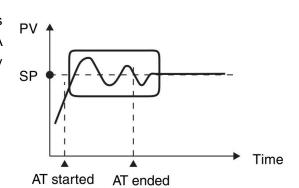
The controller will display the parameter symbols (5 \sim 18) on the first LED display, and display the parameter value on the second LED display.


6.3 Parameter value setting

Press ◀ key to go to a different digit.

Parameters value can be changed by pressing the ▼ key or the ▲ key.

Press the \bigcirc key. The display changes to the next parameter and the new value will be stored. All the Parameters can be modified when $L \circ C = 18$.


Display returns to the PV monitor if no key operation is performed within 10 seconds, and the set value will be saved.

4

7. Determining PID Constants(Auto-tuning)

When AT is executed, the optimum PID constants for the set point at that time are set automatically. A method (called the limit cycle method) for forcibly

changing the manipulated variable and finding the characteristics of the control object is employed.

Set parameter HJ as 0.5, if the output is relay set the E as 10, then set the HE as 1, in this time the controller enter into **Auto-tuning**. PV window will alternately Display "AT" and PV value, control mode is on-off mode, after 3 times vibrating(3 control period) automatic save P, I, D parameter, the self-adjusting procession finished.

Attentions:

- -The parameters of 14: Hy,1: £,13: RE refer to 5. Parameters
- -when Auto-tuning, the controller should not change the set value.
- -When the power off during Auto-tuning, it will restart Auto-tuning next time.
- -When it need artificially exit during **Auto-tuning**, set the Parameter(AT) to 0 so that can exit, but the setting result will not be valid.

8. Alarm function[OPTIONAL]

Take example for channel 1 alarm						
Alarm function	Alarm status[ON]		Alarm status[OFF]			
RLP=1	PV1≥ALI		PV1<#LI - HYI			
ALP=2	PV1 ≤ RLI		PV1>ALI + HYI			
ALP=3	PV1≥ <i>5Pl</i> + <i>RLl</i>		PV1< 5PI + ALI - HYI			
ALP=4	PV1≤ <i>5Pl</i> - <i>RLl</i>		PV1> 5PI - ALI + HYI			
	•					
ALP=5	Alarm status[ON]	PV1≤ <i>5Pl RLl</i>	OR PV1≥ 5 <i>Pi</i> + <i>R</i> L <i>i</i>			
חבר=ט	Alarm status[OFF]	5PI — RLI + H	191 < PV1< 5P1 + AL1 - H91			
	Alarm status[ON]	5P! — RL! ≤ PV1≤ 5P! + RL!				
ALP=6	Alarm status[OEE]	PV1< 5PI — ALI — HYI OR				
	Alarm status[OFF]	PV1> 5PI + ALI + HYI				
The param	The parameters of 7: 5Pl , 8: RLl , 14: HYl , 6: RLP refer to 5.Parameters					

9. OUT Relay contact On/Off mode

Set the parameter of P (Proportional Band)=1, When P=0, the controller is ON/OFF control.

OUT function		OUT status[ON]	OUT status[OFF]
positive control	P =0; CaL =1;	PV ≥ 5P + HY	PV ≤ 5P - HY
reverse control	P =0; [aL =0	PV ≤ 5P - HY	PV ≥ 5P + HY
The parameters	of 7: <i>5P</i> , 10: <i>P</i> , 14:	НУ , 15:СаL refer to 5.F	Parameters

10. Host communication based on MODBUS-RTU protocol

The master controls communication between master and slave. A typical message consists of a request (query message) sent from the master followed by an answer (response message) from the slave. When master begins data transmission, a set of data is sent to the slave in a fixed sequence. When it is received, the slave decodes it, takes the necessary action, and returns data to the master.

10.1 Communication Mode:

Data bit length	Stop bits	Parity bit	Communication time interval
8-bit (Binary)	1,2	NONE	300ms

10.2 Message length of each function (Unit: byte):

Function code	Function	Query me	essage	Response message	
(Hexadecimal)	Function	Min	Max	Min	Max
03H	Read holding registers	8	8	7	7
06H	Preset single register	8	8	8	8

10.3 Message format

Slave address	The slave address is a number from 1 to 255 manually set at the front key panel of the controller.
Function code	Refer to 2. Message length of each function
Data	The data to execute the function specified by the function code is sent to the slave and
	corresponding data returned to the master from the slave.
CRC-16	CRC-16: Cyclic Redundancy Check)

10.4 Read holding registers [03H]

The query message specifies the starting register address and quantity of registers to be read.

Slave address	Function code	Register	Quantity	CRC16				
	03H	address	The setting must be 1					
Example: The contents of the holding register 1001H are the read out from slave address 1.								
Ouery message: 01 03 10 01 00 01 D1 0A								

Response message: 01 03 10 01 00 01 D1 07 Response message: 01 03 02 **00 FD** 79 C5 Explain: 00FD=253,is processed as 25.3

10.5 Preset single register [06H]

The query message specifies data to be written into the designated holding register. Only R/W holding registers can be specified. The controller EEPROM had a life span of data written to the EEPROM less than 1000,000 times

Slave address	Function code	Register	Write data	CRC16			
		address					
Example: Data is written into the holding register 0004H of slave address 1.							
Query message: 01 06 00 04 FF 38 88 29							
Response message: 01 06 00 04 FF 38 88 29							

10.6 No response

The slave ignores the query message and does not respond when:

• The slave address in the query message does not coincide with any slave address settings.

When input set value(SV) is -20.0,-20.0 is processed as -200,-200=0000H-00C8H=FF38H

- The CRC code of the master does not coincide with that of the slave.
- Transmission error such as overrun, framing, parity and etc., is found in the query message.
- Set the Response Timeout >200ms and Delay between polls>200ms.

10.7 Register address list:

8 channels controller is composed of two identical 4 channels controller, so it has two Slave address

Symbol Decimal point		Real Register	Holding Register					
Measured value(PV1~4) YES		PV1: 1001H~PV4: 1004H	44098~44101					
Measured value(PV5~8)	YES	PV5: 1001H~PV8: 1004H	44098~44101					
Channel 1~4: the default Modbus device address is 1, Channel 5~8: the default device address is 2.								
The first public parameters (Refer to 5. Parameters)							
LocK	NO	0000H	40001					
And so on								
Baud	NO	0004H	40005					
The Parameters of channel	1 (Refer to 5. Parameter	s)						
Sn1(sn5)~ PSL1(PSL5)	-	0005H~0012H	40006~40019					
The Parameters of channel	2 (Refer to 5. Parameter	s)						
Sn2(sn6)~ PSL2(PSL6)	-	0013H~0020H	40020~40033					
The Parameters of channel	3 (Refer to 5. Parameter	s)						
Sn3(sn7)~ PSL3(PSL7)	Sn3(sn7)~ PSL3(PSL7) - 0021H~002EH 40034~40047							
The Parameters of channel	The Parameters of channel 4 (Refer to 5. Parameters)							
Sn4(sn8)~ PSL4(PSL8)	-	002FH~003CH	40048~40061					

Refer to this link for more information on MODBUS-RTU Communication Protocol:

http://www.kcmeter.com/servicesread.asp?id=4

Or scan QR code for more information:

Character Symbols: This manual indicates 9-segment display characters as shown below.

Α	В	С	D	E	F	G	Н	I	J	K	L	M
R	Ь	E	В	Ε	F	L.	Н	1	J	7	L	ō
N	0	Р	Q	R	S	Т	U	Υ				
п	o	P	9	۲	5	Ŀ	ט	9				

11. Model and Suffix Code

Specifications	Model and Suffix Code							
Model	КС							
SIZE	160×80mm panel cutout :152×76mm	М						
Number of channel	8 channels		XJ8					
Number alarm	No alarm							
	1 Alarm relay out for each channel			1				
Input Type	Thermocouple, RTD, DC voltage or Current Fixed input type per channel				М			
Control output	Relay output							
	Voltage pulse(for driving SSR)					G		
Power supply voltage	100 to 240V AC							
	24V DC						1	
Communications	RS-485(2-wire system: MODBUS-RTU)							RS
	RS-232(3-wire system: MODBUS-RTU)							RX